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SUMMARY

A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent
stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the
open-mode delamination nucleates at the midspan of the the curved bar. The classical anisotropic elasticity theory
was used to construct a “multilayer” theory for the calculations of the stress and deformation fields induced in the
multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and
intensity of the open-mode delamination stress were calculated and were compared with the results obtained from
the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate
predictions of the location and the intensity of the open-mode delamination stress than those calculated from the
anisotropic continuum theory.

NOMENCLATURE

A B,C/D arbitrary constants associated with F for loading case of end forces P
A',B',C',D’ arbitrary constants associated with F for loading case of end moments M
A,B,C,D  arbitrary constants associated with F for loading case of end moments M for isotropic materials

a inner radius of semicircular curved bar

G{ outer radius of ith layer of semicircular curved bar
am mean radius of semicircular curved bar, }(a + b)
b outer radius of semicircular curved bar

Ey modulus of elasticity of single ply in fiber direction
Er modulus of elasticity of single-ply transverse to fiber direction
E, modulus of elasticity in r direction

Eg modulus of elasticity in 8 direction

E41 quadrilateral membrane element

e loading axis offset

F Airy stress function

Grr shear modulus of single ply

Gro shear modulus associated with r—0 system

h width of semicircular curved bar

i index associated with ithlayer,i=1,2,3,...N

k anisotropic parameter, EEf

M applied end moment

N total number of laminated layers

P applied end force

T radial distance

™D radial location of op

Te radial location of ( 6,)max

. radial location of (o})max



T0 radial location of zero oy

Uy displacement in r direction
ug displacement in ¢ direction
z,y rectangular Cartesian coordinates
B anisotropic parameter, \/ 1+ 22(1 —2u,9) + £
Yro shear strain in r—4 plane
6 composite ply thickness
€r strain in r direction
€ strain in @ direction
0 tangential coordinate
VLT Poisson ratio of single-ply composite
Vrg, Vgr Poisson ratios
Vrz, Vzr
Voz, Vzo
oD delamination stress in C-coupon
Oy radial stress
(Or)max delamination stress for the case of end forces P, 07(7m, 5)
(0% Jmax delamination stress for the case of end moments M, o,(r},)
o9 tangential stress
Tro shear stress
[ 1® quantity associated with ith layer
[ % quantity associated with sth layer

1 INTRODUCTION

One of the major causes of stiffness and strength degradations in laminated composite structures is the delam-
inations between composite layers. In most engineering applications, laminated composite structures have certain
curvatures (for example, curved panels and curved beams). If the curved composite structure is subjected to bending
that tends to flatten the composite structure, tensile stresses can be generated in the thickness direction of the com-
posites. Also, shear stresses could be induced if the bending is not a “pure” bending. Under normal operations, if
the above type of bending occurs cyclically, open-mode delaminations or shear-mode delaminations could nucleate
at the sites of peak interlaminar tensile stresses or at the sites of peak interlaminar shear stresses. Continuation of
these bending cyclings will cause the delamination zones to grow in size and ultimately cause the composite struc-
tures to lose their structural integrity (loss of stiffness and strength) due to excessive delaminations. The type of
delamination failure (open mode or shear mode) depends on which type of interlaminar strength (tensile or shear) is
reached first.

One of the most appealing geometries of a fatigue test coupon for studying the composite delamination phenom-
enon is the semicircular curved bar shape (C-coupon). When such a test specimen is subjected to end forces (that is,
nonpure bending), the peak radial stress (tension, if the bending tends to increase the radius of the curvature of the
curved bar) and the peak shear stress induced in the curved bar will be identical in magnitudes but are out of phase
in the tangential direction by i’-.l Namely, the peak radial stress is located at the midspan point of the semicircular
curved bar, but the peak shear stresses occur at both ends of the semicircular curved bar. The radial distance of both
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the peak radial and the peak shear stresses are exactly the same.! The above nature of the semicircular curved bar of-
fers an excellent situation for studying the initiation and subsequent propagation of delamination zones (open-mode
or shear-mode) under cyclic loadings and for studying the fatigue behavior (degradation of stiffness and strength) of
multilayered composite materials. In reference 1, Ko represented the multilayered composite semicircular bar with
an equivalent continuous anisotropic material, and calculated radial locations and intensities of peak radial stresses
induced in the curved bar subjected to end forces and end moments. Radial location and intensity of peak radial
stress were calculated for different curved bar geometries (ratios of outer and inner radii) and for different degrees
of anisotropy. Tolf? also conducted stress analysis of curved laminated beams using both continuous and discrete
theories. He considered only the “pure” bending case. In this paper the multilayer theory (discrete theory instead of
continuous theory) and the finite element method were used to perform similar delamination analysis of the multi-
layered semicircular composite curved bar subjected to end forces and end moments. The resulting predictions of
locations and intensities of peak radial stresses are compared with the results of the anisotropic continuum theory
presented in reference 1.

2 COMPOSITE CURVED BAR

Figure 1 shows the geometry of the composite curved bar (C-coupon) for delamination fatigue tests of composite
materials. Because finite areas are needed for the load application points, both ends of the curved bar must be
extended slightly. Thus, the C-coupon consists of a semicircular curved region with straight regions at both ends.
Under the application of end forces P, the loading axis will have certain offset e from the vertical diameter of the
semicircle. Thus, the loading condition on the C-coupon is the summation of the following two loading conditions
(see fig. 2): (1) end forces P at the ends of the semicircle and (2) end moment M = Pe at the ends of the semicircle.

Because the interface between 0° and 90° composite plies has the highest Poisson’s ratio mismatch in laying
up the composite plies for fabricating the C-coupon, it is desirable to place the 90° or angle plies at the peak radial
stress point to ensure that the delamination will nucleate at that point. Because of this demand, the precise location
of the peak radial stress point must be known. The following sections will show how to determine the intensities
and radial locations of peak radial stresses in the semicircular composite curved bar.

3 ANISOTROPIC CONTINUUM THEORY

For bending a linearly elastic continuous curved bar with cylindrical anisotropy, the Airy stress function F,
written in cylindrical coordinate system, takes on the following functional forms:3

(a) for end forces P (fig. 2b)
F=[Ar"?+ Br'"P 4+ Cr+ Drinr]sin@ (D

(b) for end moments M (fig. 2c)
F=A'"+B'v? +C'r'*k 4 Dipl-* (2

where {A,B,C,D} and {A',B',C',D'} are arbitrary constants that must be determined from boundary conditions,
and the two anisotropic parameters 3 and k are respectively defined as

_ [ B By

ﬂ:»\/l"‘ E'(1—2y,9)+Gf0 €))
_ [B |

k= E, @

For the isotropic case, =2 and k= 1.



The functional form given in equation (1) is also applicable to the isotropic case (B = 2). However, the functional
format given in equation (2) cannot be applied directly to the isotropic case by simply setting k = 1. For the isotropic
case, equation (2) must be expanded in the neighborhood of k = 1 using the relationship In pE(k=1) oy =D
where k — 1 < 1 to the following familiar form*

F=A+Br*+Crflnr+ Dinr (5

where {A,3,C,D} are a different set of arbitrary constants.

Stresses in the cylindrically anisotropic body may be expressed in terms of the stress function F' as

13F 1 8*F

A m g X T ©
O*F

9= -57 m
»? (F

w555 () - ®

and the stress—strain relationships for the plane stress case are given by

1 Y
&= 50— -Eg—;ag o
Vv, 1
o= — 50+ 500 (10)°
=L (1)
Yo Gro T8
with the reciprocity relationship of
Vrg _ Vor
- == 12
E - (12)
The strains are related to the displacements through the following formulae:
Ouy
€ = or (13)
1 aug Uy
= ——t —
%= 7 g0 r (19
1 /10ur Oug ug
wer (5 3 T) (1)

3.1 Stresses

Substitution of equations (1) and (2) into equations (6) through (8) yields the following stress equations in terms
of the unknown arbitrary constants {A,B,D} or {B',C',D'}:

*For the plane strain case, E,, Ey, vg, and v, are simply replaced with T E’ ” Eq T—Vh_ (1 + ‘_’u‘_’k) and
— Varlys — VzeVe:

Y T =g’ Ver
1% 1% .
rlifx (1 + —‘le'—‘“) . respecnvely.



(a) for end forces P

oy(r,6) = [A,arﬁ-‘ —BBrA-14 g} sin @ (16)
oe(r,6) = [Aﬁ(l +B)rP~t —BA(1 - p)r P14 g] sin 0 an
na(r,6) = - [4prAt — Bar-s-14 2] s a8
(b) for end moments M
o(r) =2B + C'(1+ k)yrk1 + D'(1 = k)r~*-! (19)
oo(r) =2B'+ C'k(1+ k)r*~1 — D'k(1 — k) r—*-! (20)
9 =0 21

Notice that the magnitudes of o, (equation (16)) and 7,4 (equation (18)) for the case of end forces P are identical,
but are out of phase in the 4 direction by 7.

3.2 Displacements

Using equations (9) through (12), (16) through (18), and (19) through (21), the displacements u, (equation (13))
and uy (equation (14)) may be integrated to give the following forms, neglecting the rigid body motion terms:

(a) forend forces P

. r 1 ,
ur(r,6) = {Arﬂ [Ei ~(1+ ﬂ)%} + Br P [E“ — _g)%]
+ D(In 1) (EL - %)}sin 9 2)
1 1 7 1 1 7
= ﬁ — ___ﬁ ‘ﬁ — — ___,i
ua(r,6) {AT [Er A+B Eg Eo] *Br [E'r *AL-B) Ey EaJ
1 Vgy 1 Vor
+o|ann (5 -5) - (5 - )] eore @)
(b) forend moments M
1 11
el )} ol (1430}
-D {(1 —k)r* (%é— + %‘;)} (24)
oo (-D)

3.3 Delamination Stresses and Their Locations

For the continuous (or single layer) curved bar, the two sets of unknown constants {A.B.D} and {B',C',D'} can
be determined explicitly from the boundary conditions to give closed-form expressions for the stresses (equations
(16) to (21)) and the displacements (equations (22) to (25)).13 By using the extreme condition 5"’;0, = 0, the
functional expressions for the delamination stress (maximum value of o,) and its radial location were derived in
reference 1 for both of the aforementioned loading cases.



4 MULTILAYER THEORY

Figure 3 shows the multilayer (N -layers), semicircular curved bar subjected to both end forces P and end mo-
ments M. The stress field and displacement field in each layer i(i = 1,2,...N) for each loading case may be
obtained from the results given in section 3.

4.1 Boundary Conditions

At each interface between layers 4 and i + 1(4 = 1,2,...N — 1), the following boundary conditions for the
continuities of stresses and displacements must hold (no sliding between laycrs).

(a) for end forces P

atr = ag:
o9 (a;,0) = oV (ai,0) (26)
79(ai,0) = 7" (34,0) @n
u® (a;,0) = ul*V(a;,0) (28)
u$(a:,0) = u§"(as,0) (29)

The boundary conditions at the traction-free inner surface (i — 1 = 0) and outer surface (i = N) of the curved bar
are

atr = ap = a:

" (a,8) =0 (30)
7D(a,0) =0 (31)
atr=ay=b:
ot (b,0) =0 (32)
M (b,6) =0 (33)
(b) for end forces M
atr = ag:
¥ (a;) = o¥*V(ai) (34)
u?(ag) = ul*P(a)) (35)
u$? (o)) = uf P (a)) (36)
atr=ag = a:
oP(a) =0 (37)
atr =gy = b:
aM(h) =0 (38)



As mentioned earlier, o, and 74 (equations (16) and (18)) for the case of end forces P have identical r depen-
dency. Thus, if o, satisfies the boundary conditions, 74 will also satisfy the boundary conditions automatically.
Therefore, the boundary conditions associated with 7.4 (equations (27), (31), and (33)) are not needed.

For each loading case, each set of the previous boundary conditions will give 2+ 3( N — 1) = 3N —1 equations
for determining the 3N unknowns A;, B;, D;(i = 1,2,...N) for the case of end forces P, or 3N unknowns
B},Ci,Di(i = 1,2,... N) for the case of end moments M.

The last equation needed for each loading case is the condition that the end force P or the end moment M is
balanced by the stresses in the curved bar:

(a) for end forces P

N e .
—P=Z/ 2D(r,00dr ; 6=0 (39)
=1 -1
(b) forend moments M
N ‘
-M=)Y [ (r—mr)op(r)dr (40)
Gi-1

=1

where the negative signs in front of P and M are to increase the radius of curvature of the curved bar, and rg is the
unknown radial location where o = 0. For pure bending we have

N a;
> [ cordr=0 (41)

i=1

Therefore (since ro term vanishes), equation (40) becomes:

N .
~M=3 [* roy(ryar (42)

1=1
4.2 Boundary Conditions in Final Forms

After substitution of stress and displacement expressions given respectively in sections 3.1 and 3.2 into the
boundary conditions given in section 4.1, the following final forms of the boundary conditions are obtained:

(a) for end forces P

for {1 (equation (30)):

A1B1e? — B1BiaP + Dy = 0 (43)
for a¥ (equation (26)):
. 3. p‘ — R:R: __ﬂi . A R Bin1 i . —Bis1 e —
Alﬂja‘ B,ﬂ,a‘ + D| A|+]ﬂ|+la|' + BH'lﬁl'f‘lai - Dl+1 - 0 . (44)
for oM (equation (32)):
AnBnak¥ — ByBnaif¥ + Dy =0 (45)



for u{® (equation (28)):

A,-a'?-{ —(1+ ) (0}+B.-a-'p‘{-i.y~(l—ﬁ;)y‘gi.)}

fon 1 (|+1) A 1 u(1+1)
_Al+la " {E,(-Hl) (1+ Biv1) (l+1)} Bi+la|' ! {W—(l Bi+1) (t+l)}
T

1 YD
_D,-+1(1n 0,’) (W —_— #ﬁy) =0 (46)
T 6
for uf,‘) (equation (29)):
Bs 6 _Bi
wf g {(1+ 0 =P} - B E(',) {(1=p) o)

+D;W(1 — )

+ —PBi+ 1
—Aprafi ‘9(':,‘1){(1+/3,+1)— vV} + Bisra P ‘i‘,:l){(l Bin1) — it}

+1)
_DH-I E(H.l)(l ‘ ) = (47)

Equation (47) was obtained by taking the difference between the boundary conditions (28) and (29). This was done
because the resulting expression (47) is simpler than using equation (29).

for P (equation (39)):

E [4iCaf — o)) + Bi(ai® — 0 %) + Di(Ino; ~Tna; )| = P (48)
i=1

(b) forend moments M

for o{l) (equation (37)): '
B+ Ci(1+ k)ab 1+ Di(1 —k)aR—1=0 (49)

for 6{” (equation (34)):
2B+ Cl(1+ k)ak! + Di(1 — kp)a7s™!
=2B; = Ciaa(1+ ki)™ = Djyy (1 = ki) o™~ = 0 (50)
for g™ (equation (38)):

2By + Ch(1+ ky)b*=1 4+ DY (1 — ky)b~ "1 = 0 (51)



for u{” (equation (35)):

1 11 )
B; {Za. (E(‘) Em)}+0'{(l+k.)a (k‘ 70 E(')
) ks l 1 (i)
_D;{(l —ki)a,- (k—‘aﬁ E('))}

7 R D T
Bs+1 {20" (W - W |+l (1+ kn-l)a 1 P E$‘+l) - Egﬂl)

ke (L1 PN
+Disy {(1 — kir1)o; (km D T E,f,‘*l))} =0 (52)
for u,(,i) (equation (36)):
I R B
for M (equation (42)):
N
> [Bita} - ak1) + Clki(al* —ak) - Diki(ar™*! — a7k = —M (54)
i=1

4.3 Delamination Stresses and Their Locations

At exactly which layer the value of o, for each loading case will become maximum cannot be predicted until
after all the unknown arbitrary constants {A;, B;, C;} or { B, C}, D/} are determined from the appropriate boundary
conditions given in section 4.2. Suppose ( oy )max (0r (0} )max), the maximum value of o, due to end forces P (or
end moments M), occurs in the sth layer; then by using the extreme condition ;c, = 0, the radial location r, (or
712) Of (O )max (OF (0% )max) may be calculated from equation (16) (or equation (19)) as:

(a) for end forces P

1
__[Di=/D} —4aBB B -D]* 55
™ 2AB(B - 1)
(b) for end moments M .
D}|%&
o= [_ E] (56)
1}
And the delamination stresses (Oy)max and (o} )max for the two loading cases may be written as
(a) forend forces P
— Bi— -Bi—1 D;
(Or)max = Oy T'mx ) AuBl"' - Biﬂi'rm + — (57)
™m



(b) for end moments M

(0D)max = 04(rh) = 2B+ Cl(1+ ki) (rh) 51 + DI(1 — k) (#hy) 781 (58)
4.4 Delamination Stress in C-coupon

The delamination stresses ( 0y )max (due to P) and (o} )max (due to M) do not occur at the same radial locations of
the curved bar (see equations (55) and (56)). Thus, the delamination stress o in the C-coupon cannot be constructed
by simply summing up (0y)max and (o} )max. The value of o must be evaluated at r = rp where the summation of
the radial stress o,(r, ) due to P and the radial stress o,(7) due to M become maximum. Namely,

Due o P Due o M
op =0y (rp, ;) + o,(Tp) (59
where, the value of rp is calculated from the following extreme condition:
Due to P Dueto M
i[ ( 1)+ ()]-o (60)
7o \"3 o(r)|=
which, after substitution of equations (16) and (19) and after performing differentiation, becomes

AiBi(Bi — D7 + Bifi(Bi+ Drpf — Dy
+ (K} = 1)(Clrk+ Dirp*) = 0 D

As will be seen later, the radial location rp of the delamination stress op in the C-coupon is somewhere between
rm and v}, (thatis rp, < rp < 7).

5 NUMERICAL EXAMPLES

The anisotropic continuum theory and the multilayer theory presented respectively in sections 3 (or ref. 1) and
4 will now be applied to the delamination analysis of the composite C-coupon. One type of composite C-coupon
under development has the following geometry and ply properties:

inner radius a=2.1590 cm (0.85 in.)

outer radius b=2.9724 cm (1.17022 in.)
loading axis offset e =0.9525 cm (0.375 in.)

width h=254cm (1in.)

ply thickness & =0.01506 cm (0.00593 in.)

mean radius am = % =2.5657 cm (1.01011 in.)
radii ratio 3 =13767

a

EL=17.2369 x 101°N/m2(25 x 1081b/in.2)
Er=0.8274 x 101°N/m2(1.2 x 106Ib/in.2)
Grr=0.4137 x 101°N/m2(0.6 x 1081b/in.2)
vir =0.33

vrr =0.01584
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The aforementioned C-coupon has 54 composite plies having the stacking sequence of [05/ + 15°/ — 15°/ —
15°/ + 15°/051.

S.1 Equivalent Continuum

In order to apply the anisotropic  continuum theory, the laminated composite C-coupon will
be represented by an equivalent anisotropic continuum having the following effective material properties:

Ep = 16.3220 x 10'°N/m?(23.6731 x 10%Ib/in.2)
Ey = 0.8274 x 10'°N/m?(1.2 x 1061b/in.2)

Grg = 0.4137 x 10'°N/m?(0.6 x 10%Ib/in.2)

Vrg ~ 0.01673

Based on these effective material properties, the equivalent continuum representing the C-coupon has the values
of anisotropic parameters as B=1.7151 and k = 4.4416.

5.2 Multilayer System

For the purpose of applying the multilayer theory to the C-coupon, the extended linear regions at both ends will
be neglected, and only the semicircular region subjected to two types of loadings (end forces P and end moments
M, figure 2) will be considered. For simplification, each group of 25 layers of the 0° plies will be represented by one
layer of anisotropic continuum, ‘and the center region of 4 layers of +15° angle plies will be represented by another
anisotropic continuum. Thus, the 54-layer composite will be represented by 3 layers of anisotropic continua.

(a) 0° plies
The inner (i = 1) and the outer (5 = 3) layers have the following effective material properties:
E{" = By, = 17.2369 x 10'°N/m2(25 x 10°1b/in.2)
E® = BEr = 0.8274 x 10"°N/m?(1.2 x 10%1b/in.2)
G = Gir = 0.4137 x 10°N/m?(0.6 x 1061b/in.2)
v$) = 0.01584

which give the values of anisotropic parameters as 8 = B3 =7.9272 and k; = k5 = 4.5644.
(b) +15° plies
The center layer (§ = 2) has the following effective material properties:
E{” = 4.8873 x 10"°N/m?(7.0884 x 10%1b/in2)
E® =0.8274 x 101°N/m2(1.2 x 101b/in.2)
G7 = 0.4137 x 10°N/m?(0.6 x 1061b/in2)
v$P ~ 0.05590

which give the values of the anisotropic parameters as 3, = 4.2498 and k2 =2.4304.

The 3N (N = 3) boundary conditions for the aforementioned 3-layer laminated system may be written in matrix
forms (see appendix) for solving the 3 N unknown constants A, B, Di(i = 1,2, 3), for the case of end forces P,
or for solving the other set of 3 N unknown constants B|,C},Di(i=1,2,3), for the case of end moments M.
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6 FINITE ELEMENT ANALYSIS

To verify the solution accuracies of the analysis for which the actual loading condition of the
C-coupon was represented with the superposition of two loading cases of the semicircular curved bar (see fig. 2),
finite element stress analysis was performed on the semicircular curved bar (under two loading cases) and on the
C-coupon using the structural performance and resizing (SPAR) finite element computer program.® Figures 4 and 5
respectively show the SPAR finite element models set up for the semicircular curved bar and the C-coupon. Because
of symmetry with respect to the z axis, only the half span of the semicircular curved bar and the C-coupon were
modeled. Both systems were first reduced to three-layer systems as defined in section 5.2. Then layers 1, 2, and
3 were respectively modeled in 10, 2, and 10 layers of quadrilateral membrane E41 elements in the r direction.
In the tangential direction, the quarter-circular region (0 < 6 < 7)of the two systems was modeled with 90 E41
elements. The extended region (—e < z < 0) of the C-coupon was modeled with 25 layers of E41 elements in the
z direction.

The = 90° plane for each model was allowed to move freely in the z direction (shown with rollers in figs. 4
and 5) but not in the y direction. At the upper end of each model, only one point lying in the middle surface (og = 0
point was found to be very close to the middle surface of the curved bar) was constrained to move freely in the y
direction only (no movement in the z direction). Thus, the end of each model could rotate freely (shown with only
one roller, figs. 4 and 5). The applied force P and the applied moment M were represented respectively with the
distributions of 7,4(r, 0)’ and o4(r) obtained from the multilayer analysis. The sizes of the two SPAR models are
listed below:

Semicircular
curved bar  C-coupon
JLOCs 2093 2668
FA41 elements 1980 2530

7 RESULTS
7.1 Semicircular Curved Bar

Figure 6 shows the distributions of o, in the § = 3 plane for the case of end forces P calculated from different
theories. The values of (0, )max and ry, calculated from different theories are indicated in the figure. The values of
( oy )max calculated from different theories are quite close, except its location r,,,. The multilayer theory and the finite
element method predicted close values of r,,. The (o,)max site predicted from the anisotropic continuum theory is
located slightly closer to the middle surface than the (o, )max Sites predicted from the multilayer theory and SPAR.
The (o, )max Site for the isotropic material is closest to the middle surface and is always located between the middle
surface and the (o, )max site predicted from the anisotropic continuum theory. This can be seen more clearly from
the plots shown in figure 7.

The distance between the sites of (0, )max predicted from the multilayer theory and the anisotropic continuum
theory is
(7m) Anisotropic — ( Tm)Multilayer = (04158 — 0.3907) (b — a) = 0.0203cm (0.0080in.)
continuum
which is 1.3554 times the single ply thickness of 0.01506 cm (0.00593 in.).

Figure 8 shows the distributions of o, for the case of end moments M calculated from different theories. Unlike
the previous case, the values of r}, and (0] )max calculated from different theories are quite close, showing that the
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value of r/,, is quite insensitive to the theory used. The multilayer theory predicted the shortest distance of ), (that is,
the (0} )max site is closest to the inner boundary of the curved bar). The site of ( 01 )max predicted from the anisotropic
continuum theory always lies between the middle surface and the (0} )max site, based on isotropic theory. This is
shown in figure 9.

The distance between the sites of (0} )max predicted from the multilayer theory and the anisotropic continuum
theory is given below

(r:,,)Animic - ('r:,,)Mu]ﬁhye, = (0.4346 — 0.4327)(b — a) = 0.001545 cm (0 .000608 in.)
continuum
which is only 0.1025 times the single-ply thickness of 0.01506 cm (0.00593 in.), and is therefore, insignificant.

Figures 10 and 11 respectively show the deformed shapes of the semicircular curved bar subjected to end forces
P and end moments M. The dimensionless radial displacements atf=0andf= 7 are shown in the figures.

Table 1 summarizes all the values of (oy)maxs (0y)maxs Tm, and 7, calculated from dif-
ferent theories.

Table 1. Intensities and locations of delamination stresses in semicircular curved bar,

End forces P End moments M
Theory Item
M%l (Or)max I,’,“__T“ h_am%l ( OJr)max fg‘__Ta
Anisotropic continuum 1.4817 0.4158 1.5095 0.4346
Multilayer theory 1.4864 0.3907 1.4988 0.4327
Isotropic continuum 1.5135 0.4205 1.5222 0.4338
SPAR 1.4816 0.3935 1.4979 0.4398

7.2 C-Coupon

In order to determine the radial location rp, and magnitude of delamination stress op for the C-coupon, the two
radial stresses calculated from the semicircular curved bar due to P and M were summed up. The results are shown
in figure 12 for multilayer, anisotropic, and isotropic cases. Notice that the radial location rp predicted from all
three theories lie between r,, and r}, but closer to r,, instead of 71, because the stress contribution due to P is larger
than that due to M (e < a,,). The distance between the locations of op predicted from multilayer and anisotropic
continuum theories is about 1.05 times the ply thickness. The finite element solution data points obtained from
the C-coupon model lie in the vicinity of the two curves obtained from the multilayer and anisotropic continuum
theories. The intensity and the radial location of op predicted from SPAR (C-coupon) are closest to those predicted
from the multilayer theory. Table 2 summarizes the values of op and rp predicted from different theories.

Table 2. Intensities and location of
delamination stresses in C-coupon

C-coupon under end forces P

Theory Aza) g, =
Anisotropic continuum 2.0415 04212
Multilayer theory 2.0399 0.4017
Isotropic continuum 2.0783 0.4241
SPAR (semicircular curved bar) 2.0353 0.3935
SPAR (C-coupon) 2.0405 0.3935
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Figure 13 shows the deformed shape of the C-coupon subjected to end forces P. The dimensionless radial
displacement %= at midspan and at the free end are shown in the figure.

8 CONCLUSIONS

The multilayer theory was developed for delamination analysis of a semicircular composite curved bar subjected
to end forces and end moments. The diffcrence between the radial locations of the delamination stress (maximum
radial stress) predicted from the multilayer theory and from the anisotropic continuum theory was approximately 1.4
times the ply thickness for the case of end forces and about 1/10 of the ply thickness for the case of end moments.
The superposition method (namely, by summing up the two radial stresses induced in the semicircular curved bar
subjected to end forces and end moments), used to construct the delamination stress in the C-coupon, gave reasonably
accurate intensity of the delamination stress for the C-coupon. The finite element analysis of the C-coupon gave the
radial location of the delamination stress in the C-coupon much closer to that predicted from the multilayer theory
than from the anisotropic continuum theory.

Ames Research Center

Dryden Flight Research Facility

National Aeronautics and Space Administration
Edwards, California, December 14, 1988
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